Abstract
The Banach and Fr\'{e}chet spaces of series $A(z)=\sum_{n=1}^{\infty}a_nf(\lambda_nz)$ regularly converging in ${\mathbb C}$,where $f$ is an entire transcendental function and $(\lambda_n)$ is a sequence of positive numbers increasing to $+\infty$, are studied.Let $M_f(r)=\max\{|f(z)|:\,|z|=r\}$, $\Gamma_f(r)=\frac{d\ln\,M_f(r)}{d\ln\,r}$, $h$ be positive continuous function on $[0,+\infty)$increasing to $+\infty$ and ${\bf S}_h(f,\Lambda)$ be a class of the function $A$ such that $|a_n|M_f(\lambda_nh(\lambda_n))$ $\to 0$ as$n\to+\infty$. Define $\|A\|_h=\max\{|a_n|M_f(\lambda_nh(\lambda_n)):n\ge 1\}$. It is proved that if$\ln\,n=o(\Gamma_f(\lambda_n))$ as $n\to\infty$ then $({\bf S}_h(f,\Lambda),\|\cdot\|_h)$ is a non-uniformly convexBanach space which is also separable.In terms of generalized orders, the relationship between the growth of $\mathfrak{M}(r,A)=\break=\sum_{n=1}^{\infty} |a_n|M_f(r\lambda_n)$,the maximal term $\mu(r,A)= \max\{|a_n|M_f(r\lambda_n)\colon n\ge 1\}$ and the central index$\nu(r,A)= \max\{n\ge 1\colon |a_n|M_f(r\lambda_n)=\mu(r,A)\}$ and the decrease of the coefficients $a_n$.The results obtained are used to construct Fr\'{e}chet spaces of series in systems of functions.
Publisher
Ivan Franko National University of Lviv
Reference15 articles.
1. Leont’ev A.F. Generalizations of exponential series. – Moscow: Nauka. – 1981. (in Russian)
2. Vinnitsky B.V. Some approximation properties of generalized systems of exponentials. – Drogobych.1991. – Dep. in UkrNIINTI 25.02.1991. (in Russian)
3. Sheremeta M.N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion// Izv. Vyzov. Mat. – 1967 – V.2. – P. 100–108. (in Russian)
4. Sheremeta M.M. Relative growth of series in system functions and Laplace-Stieltjes type integrals//Axioms. – 2021. – V.10. – 43.
5. Sheremeta M.M. On the growth of series in systems of functions and Laplace-Stieltjes integrals// Mat. Stud. – 2021. – V.55, No2. – P. 124–131.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献