Abstract
We prove that the algebraic dimension of an infinite dimensional $C$-$\sigma$-complete Riesz space (in particular, of a Dedekind $\sigma$-complete and a laterally $\sigma$-complete Riesz space) with the principal projection property which either has a weak order unit or is not purely atomic, is at least continuum. A similar (incomparable to ours) result for complete metric linear spaces is well known.
Publisher
Ivan Franko National University of Lviv
Reference10 articles.
1. C.D. Aliprantis, O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006.
2. T. Banakh, A. Plichko, The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces, RACSAM. Rev. R. Acad. Cienc. Exactas Fнs. Nat. Ser. A Mat., 100 (2006), №1-2, 31–37.
3. T. Banakh, A. Plichko, Letter to editors from T. Banakh, A. Plichko, RACSAM. Rev. R. Acad. Cienc. Exactas Fнs. Nat. Ser. A Mat., 102 (2008), №2, 203.
4. C. Bessaga, A. Pe lczy´nski, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Warszawa, 1975.
5. J.R. Buddenhagen, Classroom notes: subsets of a countable set, Amer. Math. Monthly 78 (1971), №5, 536–537.