Endophytic bacteria of wheat and the potential to improve microelement composition of grain

Author:

Makar O. O.ORCID, ,Romanyuk N. D.ORCID,

Abstract

In sustainable agriculture, there is a tendency for an increased use of microbiological preparations, especially plant growth promoting bacteria (PGPB), that can supplement the phenotypic plasticity and adaptability of plants, stimulate their growth and development, increase resistance to stress. The endophytic PGPB could be a promising element of technologies for the improvement of mineral nutrition and promotion of growth and yield of wheat (Triticum spp.). They are transferred to the plant by a horizontal, from the environment (rhizosphere, phyllosphere), or a vertical, from the seeds (from generation to generation), way. The growth-promoting effect of endophytes is mediated by the synthesis and secretion of phytohormones and secondary metabolites as well as their ability to absorb N2, suppress the development of bacterial and/or fungal phytopathogens; improve mineral nutrition. The review elucidates current data on the presence of bacterial endophytes in various organs of wheat plants and their characterization as potential PGPB. Data on the most common genera of bacterial endophytes of wheat (Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Pantoea, Kosakonia, etc.) are presented, and their influence on plants is described, in particular, the effect on the absorption of micronutrients important for plants and humans such as iron (Fe) and zinc (Zn), resistance to stress factors and growth. The varietal differences in the wheat endophytic microbiome are noted. An increased micronutrient absorption and assimilation assisted by the bacterial endophytes are associated with the changes in endogenous auxins and ethylene, the release of organic acids, siderophores, indirect activation of metal transporters, etc. The mechanisms underlying plant growth stimulation are complex due to interactions between a microorganism and the whole plant microbiome and their changes during the plant ontogenesis. The analysis of the published data confirms the need for further studies of the species composition and mechanisms of interaction of endophytic PGPB to develop new strategies for improving mineral nutrition of wheat and trace element biofortification of grain. It is a feasible and promising technology of the future to overcome the problems of hidden hunger and provide quality food products to the world population with available resources and a reduced negative impact on the environment.

Publisher

Ivan Franko National University of Lviv

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3