Abstract
For $\delta$-subharmonic in $\mathbb{R}^m$, $m\geq2$, function $u=u_1-u_2$ of finite positiveorder we found the asymptotical representation of the form\[u(x)=-I(x,u_1)+I(x,u_2) +O\left(V(|x|)\right),\ x\to\infty,\]where $I(x,u_i)=\int\limits_{|a-x|\leq|x|}K(x,a)d\mu_i(a)$, $K(x,a)=\ln\frac{|x|}{|x-a|}$ for $m=2$,$K(x,a)=|x-a|^{2-m}-|x|^{2-m}$ for $m\geq3,$$\mu_i$ is a Riesz measure of the subharmonic function $u_i,$ $V(r)=r^{\rho(r)},$ $\rho(r)$ is a proximate order of $u$.The obtained result generalizes one theorem of I.F. Krasichkov for entire functions.
Publisher
Ivan Franko National University of Lviv
Reference7 articles.
1. V.S. Azarin, Subharmonic functions of completely regular growth, Ph.D., Kharkiv, 1963. (in Russian)
2. M. Brelot, Étude des fonctions sous-harmoniques au voisinage d’un point singulier, Ann. Inst. Fourier,(1949), 121-156. doi:10.5802/aif.11
3. A.A. Goldberg, N.V. Zabolotskii, Concentration index of a subharmonic function of zero order, Mat. Zametki, 34 (1983), No2, 227–236. (in Russian)
4. W.K. Hayman, P.B. Kennedy, Subharmonic Functions, Mir, Moscow, 1980. (in Russian)
5. T.A. Kolomiitseva, On the asymptotic behavior of an entire function with regular distribution of roots, Teor. Funkts., Funktsional. Anal. Prilozh., 15 (1972), 35–43. (in Russian)