Abstract
For $n\geq 2$ and a real Banach space $E,$ ${\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\Pi(E)=\Big\{[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}\Big\}.$$For $T\in {\mathcal L}(^n E:E),$ we define $$\qopname\relax o{Nr}({T})=\Big\{[x^*, (x_1, \ldots, x_n)]\in \Pi(E): |x^{*}(T(x_1, \ldots, x_n))|=v(T)\Big\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ such that $\qopname\relax o{Nr}({T})=\{\pm [x^{*}, (x_1, \ldots, x_n)]\}.$In this paper, we investigate some class of numerical radius peak mappings in ${\mathcalL}(^n l_p:l_p)$ for $1\leq p<\infty.$ Let $(a_{j})_{j\in \mathbb{N}}$ be a bounded sequence in $\mathbb{R}$ such that $\sup_{j\in \mathbb{N}}|a_j|>0.$Define $T\in {\mathcal L}(^n l_p:l_p)$ by$$T\Big(\sum_{i\in \mathbb{N}}x_i^{(1)}e_i, \cdots, \sum_{i\in \mathbb{N}}x_i^{(n)}e_i \Big)=\sum_{j\in \mathbb{N}}a_{j}~x_{j}^{(1)}\cdots x_{j}^{(n)}~e_j.\qquad\eqno(*)$$In particular is proved the following statements:\$1.$\ If $1< p<+\infty$ then $T$ is a numerical radius peak mapping if and only if there is $j_0\in \mathbb{N}$ such that$$|a_{j_0}|>|a_{j}|~\mbox{for every}~j\in \mathbb{N}\backslash\{j_0\}.$$
$2.$\ If $p=1$ then $T$ is not a numerical radius peak mapping in ${\mathcal L}(^n l_1:l_1).$
Publisher
Ivan Franko National University of Lviv
Reference12 articles.
1. R.M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n-linear forms, Function spaces (Edwardsville, IL, 1994), 19–28, Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.
2. E. Bishop, R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97–98.
3. Y.S. Choi, S.G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54 (1996), No2, 135–147.
4. S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
5. M. Jiménez Sevilla, R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math., 127 (1998), 99–112.