Biophysical features of using a recombination sensor to detect lactate dehydrogenase: sensitivity mechanisms analysis

Author:

,Kozinetz OleksiiORCID,Sus BogdanORCID, ,Tsymbalyuk OlgaORCID, ,Litvinenko SergiiORCID,

Abstract

Background. Most pathologies of the human body (in particular, malignant neoplasms, myocardial hypoxia, liver diseases, etc.) are accompanied by a violation of the integrity of cells in target tissues and the release of intracellular macromolecules into the extracellular environment. Thus, an important diagnostic and prognostic indicator is the level of activity of certain enzymes in blood serum, which are normally intracellular. One of the most promising areas of modern medical electronics and biophysics is the development and optimization of enzyme screening methods in biological fluids. In this study, we aimed to investigate the biophysical characteristics of using a recombination sensor for determining LDH activity in biological fluids. Materials and Methods. Experiments were performed on preparations of standard human blood serum. The reference determination of lactate dehydrogenase activity was carried out photometrically based on the change (decrease) in the concentration of the reduced form of the NADH coenzyme. The passage of the lactate dehydrogenase reaction was experimentally recorded by measuring the photocurrent of a silicon structure with a buried barrier under light irradiation from the region of strong absorption (λ = 532 nm). Results. The biophysical features of the device were studied. The detection of lactate dehydrogenase becomes possible due to the transfer of a hydrogen ion from nicotinamide adenine dinucleotide (NADH) to pyruvate, as a result of which lactate and NAD+ are formed. The effect is explained by the local electrostatic influence on the parameters of the recombination centers in the near-surface bending zone near the silicon surface, which leads to a change in the surface recombination rate. Conclusions. Our approach can be considered as a promising way to develop a highly sensitive method for the detection of lactate dehydrogenase. It has been experi­mentally shown that effective detection is possible in two changes at the surface ben­ding of the deep barrier silicon substrate zone.

Publisher

Ivan Franko National University of Lviv

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3