The influence of metal nanocarboxylates on the nitrogen-fixing activity of symbiotic soybean systems grown under field conditions

Author:

,Kots SergiiORCID,Khrapova AnastasiiaORCID, ,Rybachenko LiliaORCID, ,Pukhtaievych PetroORCID,

Abstract

Background. Numerous scientific and industrial studies have proven the high effectiveness of using micronutrients in nanoscale form in agricultural crop cultivation technologies. Among them, special attention is drawn to soybeans, which hold a leading position in terms of sown areas among other leguminous crops in the country. They can provide up to 70 % of their own nitrogen needs through the fixation of its molecular form from the atmosphere in symbiosis with Bradyrhizobium japonicum nodulating bacteria. New methods of molecular biology, biotechnology, and genetic engineering, along with classical methods of microbiology, plant physiology, genetics, and agrochemistry, allow for addressing both fundamental questions regarding the characteristics of formation and functioning of legume-rhizobial systems, and practical approaches to correcting the interactions between symbiotic partners with the aim of creating highly effective symbioses. Therefore, research aimed at significant increasing the current level of biological nitrogen fixation and adapting symbiotic systems to negative environmental factors is currently relevant. The use of nanotechnology, in particular, the study of the effect of iron, germanium, and cobalt nanocarboxylates on the formation and functioning of the soybean-rhizobial symbiosis under field conditions in combination with seed inoculation with rhizobial bacteria may be promising. Materials and Methods. The objects of the investigation were symbiotic systems created with the participation of the Almaz variety of soybean and the Bradyrhizobium japonicum B1-20 rhizobacteria, and with the introduction of nanocarboxylates of iron (Fe), germanium (Ge) and cobalt (Co) into their cultivation medium. Physiological, microbiological, biochemical, and statistical research methods were used. Results. It was found that under field conditions, before the pod formation stage, the vegetative mass of soybean plants inoculated with rhizobial bacteria with the introduction of nanoparticles of carboxylates of iron, germanium, or cobalt into their cultivation medium was at the level of control plants or slightly exceeded them. It has been shown that under the effects of chelated micronutrients, the number of root nodules increased compared to control plants during the flowering and pod formation stages, and their mass was greater from the three trifoliate leaf stage, which ensured efficient functioning of the legume-rhizobial symbiosis. It has been noted that the used metal nanocarboxylates promote active functioning of the symbiotic apparatus in soybean plants, as an increase in nitrogen-fixing activity was observed at the stages of three trifoliate leaf development and flowering, ranging from 26–70 % depending on the microelement used. Conclusions. During field cultivation of soybeans, the effectiveness of pre-sowing seed inoculation with Bradyrhizobium japonicum B1-20 rhizobia was demonstrated through the introduction of iron, germanium, or cobalt nanocarboxylates into their cultivation medium. This opens up opportunities for increasing the efficiency of symbiotic systems of soybeans.

Publisher

Ivan Franko National University of Lviv

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3