Author:
Bouhafsi Y.,Ech-chad M.,Missouri M.,Zouaki A.
Abstract
Let $L(H)$ denote the algebra of operators on a complexinfinite dimensional Hilbert space $H$ and let $\;\mathcal{J}$denote a two-sided ideal in $L(H)$. Given $A,B\in L(H)$, definethe generalized derivation $\delta_{A,B}$ as an operator on$L(H)$ by
\centerline{$\delta_{A,B}(X)=AX-XB.$}
\smallskip\noi We say that the pair ofoperators $(A,B)$ has the Fuglede-Putnam property$(PF)_{\mathcal{J}}$ if $AT=TB$ and $T\in \mathcal{J}$ implies$A^{\ast}T=TB^{\ast}$. In this paper, we give operators $A,B$ forwhich the pair $(A,B)$ has the property $(PF)_{\mathcal{J}}$. Weestablish the orthogonality of the range and the kernel of ageneralized derivation $\delta_{A,B}$ for non-normal operators $A,B\in L(H)$. We also obtain new results concerning the intersectionof the closure of the range and the kernel of $\delta_{A,B}$.
Publisher
Ivan Franko National University of Lviv
Reference23 articles.
1. J.H. Anderson, On normal derivations, Proc. Amer. Math. Soc., 38 (1973), 135–140.
2. J.H. Anderson, C. Fioas, Properties which normal operators share with normal derivations and related operators, Pacific J. Math., 61 (1975), 313–325.
3. C.A. Berger, B.I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., 79 (1973), 1193–1199.
4. S. Bouali, J. Charles, Extension de la notion d’op´erateur-sym´etrique I, Acta. Sci. Math. (Szeged), 58 (1993), 517–525.
5. S. Bouali, S. Cherki, Approximation by generalized commutators, Acta Sci. Math (Szeged), 63 (1997), 273–278.