Optimal recovery of operator sequences

Author:

Babenko V. F.,Parfinovych N. V.,Skorokhodov D. S.ORCID

Abstract

In this paper we solve two problems of optimal recovery based on information given with an error. First is the problem of optimal recovery of the class $W^T_q = \{(t_1h_1,t_2h_2,\ldots)\,\colon \,\|h\|_{\ell_q}\le 1\}$, where $1\le q < \infty$ and $t_1\ge t_2\ge \ldots \ge 0$ are given, in the space $\ell_q$. Information available about a sequence $x\in W^T_q$ is provided either (i) by an element $y\in\mathbb{R}^n$, $n\in\mathbb{N}$, whose distance to the first $n$ coordinates $\left(x_1,\ldots,x_n\right)$ of $x$ in the space $\ell_r^n$, $0 < r \le \infty$, does not exceed given $\varepsilon\ge 0$, or (ii) by a sequence $y\in\ell_\infty$ whose distance to $x$ in the space $\ell_r$ does not exceed $\varepsilon$. We show that the optimal method of recovery in this problem is either operator $\Phi^*_m$ with some $m\in\mathbb{Z}_+$ ($m\le n$ in case $y\in\ell^n_r$), where \smallskip\centerline{$\displaystyle \Phi^*_m(y) = \Big\{y_1\left(1 - \frac{t_{m+1}^q}{t_{1}^q}\Big),\ldots,y_m\Big(1 - \frac{t_{m+1}^q}{t_{m}^q}\Big),0,\ldots\right\},\quad y\in\mathbb{R}^n\text{ or } y\in\ell_\infty,$} \smallskip\noior convex combination $(1-\lambda) \Phi^*_{m+1} + \lambda\Phi^*_{m}$. The second one is the problem of optimal recovery of the scalar product operator acting on the Cartesian product $W^{T,S}_{p,q}$ of classes $W^T_p$ and $W^S_q$, where $1 < p,q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and $s_1\ge s_2\ge \ldots \ge 0$ are given. Information available about elements $x\in W^T_p$ and $y\in W^S_q$ is provided by elements $z,w\in \mathbb{R}^n$ such that the distance between vectors $\left(x_1y_1, x_2y_2,\ldots,x_ny_n\right)$ and $\left(z_1w_1,\ldots,z_nw_n\right)$ in the space $\ell_r^n$ does not exceed $\varepsilon$. We show that the optimal method of recovery is delivered either by operator $\Psi^*_m$ with some $m\in\{0,1,\ldots,n\}$, where \smallskip\centerline{$\displaystyle \Psi^*_m = \sum_{k=1}^m z_kw_k\Big(1 - \frac{t_{m+1}s_{m+1}}{t_ks_k}\Big),\quad z,w\in\mathbb{R}^n,$} \smallskip\noior by convex combination $(1-\lambda)\Psi^*_{m+1} + \lambda\Psi^*_{m}$. As an application of our results we consider the problem of optimal recovery of classes in Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the space $\ell_p$ with $p > 2$.

Publisher

Ivan Franko National University of Lviv

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3