Abstract
We continue the study of different aspects of Descartes' rule of signs and discuss the connectedness of the sets of real degree $d$ univariate monic polynomials (i.~e. with leading coefficient $1$) with given numbers $\ell ^+$ and $\ell ^-$ of positive and negative real roots and given signs of the coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That is, we consider the space $\mathcal{P}^d:=\{ P:=x^d+a_1x^{d-1}+\dots +a_d\}$, $a_j\in \mathbb{R}^*=\mathbb{R}\setminus \{ 0\}$, the corresponding sign patterns $\sigma=(\sigma_1,\sigma_2,\dots, \sigma_d)$, where $\sigma_j=$sign$(a_j)$, and the sets $\mathcal{P}^d_{\sigma ,(\ell ^+,\ell ^-)}\subset \mathcal{P}^d$ of polynomials with given triples $(\sigma ,(\ell ^+,\ell ^-))$.We prove that for degree $d\leq 5$, all such sets are connected or empty. Most of the connected sets are contractible, i.~e. able to be reduced to one of their points by continuous deformation. Empty are exactly the sets with $d=4$, $\sigma =(-,-,-,+)$, $\ell^+=0$, $\ell ^-=2$, with $d=5$, $\sigma =(-,-,-,-,+)$, $\ell^+=0$, $\ell ^-=3$, and the ones obtained from them under the $\mathbb{Z}_2\times \mathbb{Z}_2$-actiondefined on the set of degree $d$ monic polynomials by its two generators which are two commuting involutions: $i_m\colon P(x)\mapsto (-1)^dP(-x)$ and $i_r\colon P(x)\mapsto x^dP(1/x)/P(0)$. We show that for arbitrary $d$, two following sets are contractible:1) the set of degree $d$ real monic polynomials having all coefficients positive and with exactly $n$ complex conjugate pairs of roots ($2n\leq d$);2) for $1\leq s\leq d$, the set of real degree $d$ monic polynomials with exactly $n$ conjugate pairs ($2n\leq d$) whose first $s$ coefficients are positive and the next $d+1-s$ ones are negative.For any degree $d\geq 6$, we give an example of a set $\mathcal{P}^d_{\sigma ,(\ell^+,\ell^-)}$ having $\Lambda (d)$ connected compo\-nents, where $\Lambda (d)\rightarrow \infty$ as $d\rightarrow \infty$.
Publisher
Ivan Franko National University of Lviv
Reference21 articles.
1. A. Albouy, Y. Fu, Some remarks about Descartes’ rule of signs, Elemente der Mathematik, 69 (2014), 186–194.
2. F. Cajori, A history of the arithmetical methods of approximation to the roots of numerical equations of one unknown quantity, Colo. Coll. Publ. Sci. Ser. 12–7 (1910), 171–215.
3. H. Cheriha, Y. Gati, V.P. Kostov, A non-realization theorem in the context of Descartes’ rule of signs, arXiv:1911.12255.
4. D.R. Curtiss, Recent extensions of Descartes’ rule of signs, Annals of Mathematics, 19 (1918), №4, 251–278.
5. J.-P. de Gua de Malves, D´emonstrations de la R`egle de Descartes, Pour connoˆıtre le nombre des Racines positives & n´egatives dans les ´Equations qui n’ont point de Racines imaginaires, Memoires de Math´ematique et de Physique tir´es des registres de l’Acad´emie Royale des Sciences (1741), 72–96.