Scots pine defensins inhibit Ips acuminatus α-amylase activity

Author:

Yusypovych YuriiORCID, ,Kit OlehORCID,Kramarets VolodymyrORCID,Shalovylo YuliiaORCID,Korol MykolaORCID,Zaika VolodymyrORCID,Krynytskyy HryhoriyORCID,Kovaleva ValentynaORCID, , , , , , ,

Abstract

Background. Pine bark beetle Ips acuminatus (Gyllenhal, 1827) is one of the most harmful pests of pine trees as it affects the phloem of the upper part of the stem and branches, disrupting the flow of nutrients and water to the crown. I. acuminatus feeds by plant tissues rich in starch, so α-amylases must play a pivotal role in the carbohydrate metabolism of these insects. However, in conifer bark beetles, α-amylases remain poorly understood. Materials and Methods. To detect the α-amylase activity in the digestive system of I. acuminatus, we obtained extracts from larvae, pupae, and adults that were collected from naturally infested Scots pine. The α-amylase activity of crude extracts from different stages and parts of the bark beetle’s body was assessed using 1% starch agar plates. The quantitative evaluation of the α-amylase inhibitory activity of recombinant defensins PsDef1, PsDef2, and PsDef5.1 was performed using the Bernfeld method. The docking models of Scots pine defensins and Ips typographus L. α-amylase (AmyIp) complexes were predicted using the ClusPro 2.0 web server. Results and Discussion. As a result, we found the presence of α-amylase activity in the digestive systems of both larvae and adults of I. acuminatus, but not in pupae. All tested defensins, PsDef1, PsDef2, and PsDef5.1, exhibited inhibitory activity against insect α-amylase at micromolar concentrations. The IC50 values for these peptides were 4.9±0.6 μM, 4.6±0.8 μM, and 2.8±0.5 μM, respectively. In the PsDefs-AmyIt complexes, a network of hydrogen bonds, ionic bridges, and nonbonded contacts are formed between the enzyme and its inhibitor, which prevents the substrate from reaching the catalytic site. The PsDef5.1-AmyIt complex has the largest interfacial contact area, 2328 Å2, in comparison with two other defensins, which correlates well with the inhibitory activity of defensins in this study. Conclusion. Thus, we have identified α-amylase activity in I. acuminatus and demonstrated the ability of Scots pine defensins to inhibit it, sugges­ting that they play a role in pine defenses against this pest.

Publisher

Ivan Franko National University of Lviv

Subject

Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3