Lactic acid as a systemic product and biomarker of physical load

Author:

Boretsky Yu. R.ORCID, ,Hlozhyk I. Z.ORCID,Hashchyshyn V. R.ORCID,Tymochko-Voloshyn R. I.ORCID,Paraniak N. M.ORCID,Shavel Kh. E.ORCID,Stefanyshyn M. V.ORCID,Verbin I. V.ORCID,Ivashchenko V. A.ORCID,Gayda G. Z.ORCID,Gonchar M. V.ORCID, , , , , , , , , ,

Abstract

This paper presents an up-to-date review of research data on the specific features of lactic acid metabolism and its role as an effector of vital regulatory mechanisms. Lactic acid is an alpha-hydroxy monocarboxylic acid. Physical loads of submaximal intensity and some diseases can cause dramatic increase of lactic acid content in the body fluids. The excessive lactate is removed from the working muscle and either metabolized by other tissues or excreted from the human body. Alteration of the lactate-pyruvate balance is one of the main markers of the development of cardiac hypertrophy and failure. The redistribution of lactate between the cells producing it and the cells that metabolize it is vital to maintain a stable pH level in tissues and hold lactate in the body since this compound is an important energy source as well as an effector of important regulatory mechanisms. The quantification of lactate is used to assess general physical capabilities of the human body, the intensity of physical load and the rate of recovery in physical rehabilitation. Specialized proteins, which refer to the group of monocarboxylate transporters, are involved in lactate excretion and absorption by cells. The presence of various types of transporters in cell membranes that differ in affinity to lactate and the direction of transport ensures a rapid redistribution of lactic acid throughout the body and regulates the intensity and direction of its metabolism according to the physiological needs. Efficient transfer and redistribution of lactate between different tissues of the body is essential, given the participation of lactate in several important regulatory mechanisms. As an effector, lactate is involved in the regulation of angiogenesis, differentiation of myosatellitocytes, regeneration of muscle fibers, polarization of macrophages and the course of inflammatory processes. Besides, lactate participates in epigenetic mechanisms of muscle tissue metabolism regulation. Therefore, lactate is one of the key metabolites in the human body.

Publisher

Ivan Franko National University of Lviv

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3