On close-to-pseudoconvex Dirichlet series

Author:

Mulyava O. M.,Sheremeta M. M.,Medvediev M.G.

Abstract

For a Dirichlet series of form $F(s)=\exp\{s\lambda_1\}+\sum\nolimits_{k=2}^{+\infty}f_k\exp\{s\lambda_k\}$ absolutely convergent in the half-plane $\Pi_0=\{s\colon \mathop{\rm Re}s<0\}$ new sufficient conditionsfor the close-to-pseudoconvexity are found and the obtained result is applied to studying of solutions linear differential equations of second order with exponential coefficients. In particular, are proved the following statements: 1) Let $\lambda_k=\lambda_{k-1}+\lambda_1$ and $f_k>0$ for all $k\ge 2$. If $1\le\lambda_2f_2/\lambda_1\le 2$ and $\lambda_kf_k-\lambda_{k+1}f_{k+1}\searrow q\ge 0$ as $k\to+\infty$ then function of form {\bf(1)} is close-to-pseudoconvex in $\Pi_0$ (Theorem 3). This theorem complements Alexander's criterion obtained for power series.2) If either $-h^2\le\gamma\le0$ or $\gamma=h^2$ then differential equation $(1-e^{hs})^2w''-h(1-e^{2hs})w'+\gamma e^{2hs}=0$ $(h>0, \gamma\in{\mathbb R})$ has a solution $w=F$ of form {\bf(1)} with the exponents $\lambda_k=kh$ and the the abscissa of absolute convergence $\sigma_a=0$ that is close-to-pseudoconvex in $\Pi_0$ (Theorem 4).

Publisher

Ivan Franko National University of Lviv

Reference11 articles.

1. G.M. Golusin, Geometrical theory of functions of complex variables, M.: Nauka, 1966. (in Russian); Engl. transl.: AMS: Translations of Mathematical monograph, V.26, 1969.

2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), №2, 169–185.

3. J.M. Alexander, Functions which map the interior of the unit circle upon simple regions, Annals Math., (1915), 12–22.

4. S.M. Shah, Univalence of a function f and its successive derivatives when f satisfies a differential equation, II, J. Math. Anal. Appl., 142 (1989), 422–430.

5. Z.M. Sheremeta, On entire solutions of a differential equation, Mat. Stud., 14 (2000), №1, 54–58.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3