Author:
Mykytyuk Ya. V.,Sushchyk N. S.
Abstract
In this paper, we study a connection between the operator Riccati equation
$\displaystyle S'(x)=KS(x)+S(x)K-2S(x)KS(x), \quad x\in\mathbb{R},$
and the set of reflectionless Schr\"odinger operators with operator-valued potentials.Here $K\in \mathcal{B}(H)$, $K>0$ and $S:\mathbb{R}\to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the Banach algebra of all linear continuous operators acting in a separable Hilbert space $H$. Let $\mathscr{S}^+(K)$ be the set of all solutions $S$ of the Riccati equation satisfying the conditions $0< S(0)< I $ and $S'(0)\ge 0$, with $I$ being the identity operator in $H$. We show that every solution $S\in \mathscr{S}^+(K)$ generates a reflectionless Schr\"odinger operator with some potential $q$ that is an analytic function in the strip
$\displaystyle \Pi_K:=\left\{z=x+iy \mid x,y\in\mathbb{R}, \,\, |y|<\tfrac{\pi}{2\|K\|} \right\};$
moreover,
$\displaystyle \|q(x+iy)\|\le2\|K\|^2\cos^{-2}(y\|K\|), \quad (x+iy)\in\Pi_K .$
Publisher
Ivan Franko National University of Lviv
Reference8 articles.
1. V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.
2. I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №2, 1251–1270.
3. F. Gesztesy, W. Karwowski, Z. Zhao, Limits of soliton solutions, Duke Math. J., 68 (1992), №1, 101–150.
4. S. Kotani, KdV flow on generalized reflectionless potentials, Zh. Mat. Fiz. Anal. Geom., 4 (2008), №4, 490–528.
5. R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schr¨odinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487–527.