Uniqueness of Meromorphic Functions With Nonlinear Differential Polynomials Sharing a Small Function IM

Author:

Jayarama H. R.,Bhoosnurmath S. S.,Chaithra C. N.,Naveenkumar S. H.

Abstract

In the paper, we discuss the distribution of uniqueness and its elements over the extended complex plane from different polynomials of view. We obtain some new results regarding the structure and position of uniqueness. These new results have immense applications like classifying different expressions to be or not to be unique. The principal objective of the paper is to study the uniqueness of meromorphic functions when sharing a small function $a(z)$ IM with restricted finite order and its nonlinear differential polynomials. The lemma on the logarithmic derivative by Halburb and Korhonen (Journal of Mathematical Analysis and Applications, \textbf{314} (2006), 477--87) is the starting point of this kind of research. In this direction, the current focus in this field involves exploring unique results for the differential-difference polynomials of meromorphic functions, covering both derivatives and differences. Liu et al. (Applied Mathematics A Journal of Chinese Universities, \textbf{27} (2012), 94--104) have notably contributed to this research. Their research establishes that when $n \leq k + 2$ for a finite-order transcendental entire function $f$ the differential-difference polynomial$[f^{n}f(z+c)]^{(k)} - \alpha(z)$ has infinitely many zeros. Here, $\alpha(z)$ is characterized by its smallness relatively to $f$. Additionally, for two distinct meromorphic functions $f$ and $g$, both of finite order, if the differential-difference polynomials $[f^{n}f(z+c)]^{(k)}$\ and\ $[g^{n}g(z+c)]^{(k)}$ share the value $1$ in the same set, then $f(z)=c_1e^{dz},$ $g(z)=c_2e^{-dz}.$ We prove two results, which significantly generalize the results of Dyavanal and Mathai (Ukrainian Math. J., \textbf{71} (2019), 1032--1042), and Zhang and Xu (Comput. Math. Appl., \textbf{61} (2011), 722-730) and citing a proper example we have shown that the result is true only for a particular case. Finally, we present the compact version of the same result as an improvement.

Publisher

Ivan Franko National University of Lviv

Subject

General Mathematics

Reference25 articles.

1. W.K. Hayman, Meromorphic functions, Oxford University Press, 1964.

2. A.A. Goldberg, I.V. Ostrovskii, Value Distribution of Meromorphic Functions, American Mathematical Soc., 236, 2008.

3. R.G Halburd, R.J Korhonen, Difference analogue of the lemma on the log arithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–87.

4. R.G. Halburd, R.J. Korhonen, Nevanlinna theory for the difference operator, Annales Academiae Scientiarum Fennicae. Mathematica, 31 (2006), 463–478.

5. Y.F. Wang, On Mues conjecture and Picard values, Science in China, Ser. A, 36 (1993), 28–35.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3