Asymptotic solutions of singularly perturbed linear differential-algebraic equations with periodic coefficients

Author:

Radchenko S.,Samoilenko V.,Samusenko P.

Abstract

The paper deals with the problem of constructing asymptotic solutions for singular perturbed linear differential-algebraic equations with periodic coefficients. The case of multiple roots of a characteristic equation is studied. It is assumed that the limit pencil of matrices of the system has one eigenvalue of multiplicity n, which  corresponds to two finite elementary divisors and two infinite elementary divisors whose multiplicity is greater than 1.A technique for finding the asymptotic solutions is developed and n formal linearly independent solutions are constructed for the corresponding differential-algebraic system. The developed algorithm for constructing formal solutions of the system is a nontrivial generalization of the corresponding algorithm for constructing asymptotic solutions of a singularly perturbed system of differential equations in normal form, which was used in the case of simple roots of the characteristic equation.The modification of the algorithm is based on the equalization method in a special way the coefficients at powers of a small parameter in algebraic systems of equations, from which the coefficients of the formal expansions of the searched solution are found. Asymptotic estimates for the terms of these expansions with respect to a small parameter are also given.For an inhomogeneous differential-algebraic system of equations with periodic coefficients, existence and uniqueness theorems for a periodic solution satisfying some asymptotic estimate are proved, and an algorithm for constructing the corresponding formal solutions of the system is developed. Both critical and non-critical cases are considered.

Publisher

Ivan Franko National University of Lviv

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3