Adaptive Wind Field Estimation Using an Empirical Bayesian Approach

Author:

Kiehn Daniel1ORCID,Schultz Julius2,Fezans Nicolas1ORCID,Römer Ulrich2

Affiliation:

1. DLR, German Aerospace Center, 38108 Braunschweig, Germany

2. Technische Universität Braunschweig, 38106 Braunschweig, Germany

Abstract

In lidar-based gust load alleviation, the wind profile ahead of the aircraft cannot be measured directly but has to be reconstructed (estimated) based on the acquired line-of-sight measurements. Such wind reconstruction algorithms typically include regularization in order to adequately handle the noise within the data. This paper presents an empirical Bayesian approach to choosing optimal regularization parameters for any given set of measurements. Using simulations of flight through turbulence, the Bayesian approach is compared with a former approach (based on engineering guess) and an omniscient optimizer, which yields the best achievable results for a constant set of parameters by using the full knowledge of the wind field. The Bayesian approach is shown to outperform the engineering guess and performs close to the omniscient optimizer while purely relying on the lidar measurement data.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3