Impact of Second-Order Slip on Radiative Magnetohydrodynamics Rotating Flow in Channel

Author:

Ali Aamir1,Hussain Shahid1,Umber Tehzeen1,Ashraf Muhammad2

Affiliation:

1. COMSATS University Islamabad, Attock 43600, Pakistan

2. University of Sargodha, Sargodha 40100, Pakistan

Abstract

In our current investigation, we have discussed the effects of second-order slip and radiation on the flow of a generalized rotating fluid inside a channel in the presence of a magnetic field. The flow equations are transformed into a set of ordinary differential equations with the help of suitable similarity transformations, and the resultant coupled nonlinear ordinary differential equations are solved analytically. Using the obtained results, the effects of the involved physical parameters on the flow dynamics are examined and described physically. In addition, Pearson’s coefficient of correlation has been utilized to measure the linear association between different variables. The impact of emerging dimensionless parameters such as Hartman number, rotation parameter, radiation parameter, viscosity parameter, first- and second-order slip parameter, Schmidt number, and suction parameter on the Nusselt number and Sherwood number have all been investigated using a slope linear regression approach across the whole data points. The [Formula: see text]-test approach has been adopted to explore the relationship between various involved physical parameters.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3