Effects of Thermal Expansion and Pressure on Far-Field Fluctuations of Heterogeneous Propellants

Author:

Brown Kevin C.1,Jackson Thomas L.2

Affiliation:

1. U.S. Air Force Research Laboratory, Edwards Air Force Base, California 93524

2. University of Florida, Gainesville, Florida 32611

Abstract

In this work, we carry out three-dimensional mesoscale simulations of heterogeneous solid propellant combustion. We solve the reactive low-Mach-number equations in the gas phase with complete coupling to the solid phase. The model takes into account thermal expansion and deformation in the solid phase by using a hypoelastic law in the quasi-static limit. To account for morphology, we select two different propellant formulations with different particle size distributions and present the results as a function of pressure. The thermomechanical behavior is accessed by examining quantities such as strain and stress in the propellant as a function of pressure and propellant morphology. We also show that temperature and velocity fluctuations exist in the far field above the propellant surface and that these fluctuations can be significant. To better understand the nature of these fluctuations, we vary the pressure and make relevant plots of normal velocity and temperature probability density functions, as well as time autocorrelations. Such descriptions are necessary to account for the coupling between the mesoscale and the macroscale, where the fluctuations at the mesoscale can affect quantities at the macroscale, such as head-end pressure, trigger parietal vortex shedding, and aeroacoustics.

Funder

Air Force Research Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Reference33 articles.

1. A Global View of the Use of Aluminum Fuel in Solid Rocket Motors

2. Fluctuations above a burning heterogeneous propellant

3. Effect of propellant morphology on acoustics in a planar rocket motor

4. NevillA. “Effect of Propellant Morphology on the Acoustics of the Bates Motor,” Master’s Thesis, Univ. of Illinois at Urbana-Champaign, Champaign, IL, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3