Natural Convection Instabilities Using the Lattice Boltzmann Method: Cavity Aspect Ratio Effect

Author:

Berra El Mehdi1ORCID,Faraji Mustapha1

Affiliation:

1. Hassan II University of Casablanca, 20250 Casablanca, Morocco

Abstract

In this paper, the natural convection instability flows in a partial heating cavity filled with air and cooled by the top wall are numerically investigated using the lattice Boltzmann method; and the cavity is partially heated and contains a heat source from below that is presented as an electronic component. To track the cavity aspect ratio effect on the heat transfer over time, first, a series of numerical simulations is completed by varying the aspect ratio of the cavity from [Formula: see text] to [Formula: see text]. The results show that the change in aspect ratio has a noticeable impact on the heat transfer behavior, specifically on the temperature distribution in the cavity, and the numerical results obtained indicate two different temperature distribution regimes: a stable steady regime, and a stable oscillatory regime. In the second step, a numerical simulation is done to study the natural convection instability into the cavity for the aspect ratio configuration of [Formula: see text]. The results show that the cavity structure has an important effect on the heat transfer in the cavity. The lattice Boltzmann method choice as a numerical simulation approach is due to its considerable result in fluid flow simulation and also to its simplicity of implementation, and it has become a suitable alternative method for solving fluid dynamics and thermal problems, as well as challenged traditional methods in many sectors by its simplicity of implementation.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3