Nitric Oxide and Temperature Measurement Using Laser Absorption Spectroscopy in Arc-Heater Plenum

Author:

Gessman Isabella1,Sub Lee Gyu1,Kato Nozomu1ORCID,Lee Tonghun1,Ghanekar Shruti2,Kim Keunsoo3,Yoo Jihyung4

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

2. UL Fire Safety Research Institute, Columbia, Maryland 21046

3. Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

4. Hanyang University, Seoul 04763, Republic of Korea

Abstract

A mid-infrared tunable diode laser absorption spectroscopy (TDLAS) sensor to measure rovibrational temperature and nitric oxide (NO) mole fraction in the arc-heater plenum was developed and employed in the Arc Heated Combustion Tunnel-II (ACT-II) facility at the University of Illinois at Urbana-Champaign. From this study, TDLAS-inferred temperatures were found to differ from the conventional method to estimate temperature by over 13%. Chemical equilibrium simulations were performed at the TDLAS-inferred temperatures to understand how chemical relaxation timescales compare with plenum residence times. Results from this study show NO levels higher than equilibrium concentrations, with relaxation timescales that exceed plenum residence times. With insufficient time to reach equilibrium, elevated NO levels are expected to remain in the test gas and persist into the scramjet model.

Funder

Air Force Office of Scientific Research

Office of Naval Research

Department of Energy National Nuclear Security Administration

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3