Affiliation:
1. China Academy of Aerospace Aerodynamics, 100074 Beijing, People’s Republic of China
Abstract
Wind-tunnel tests of the double-swept waverider were performed in the off-design states, aiming to analyze its potential advantage in wide-speed performances. The test configurations were generated using the planform-customized waverider design, developed from the osculating-cone method. Then models of double-swept waveriders with the bend and cusp head were fabricated, and compared with a model of a single-swept waverider also built using the same method. A variety of experiments in their on-design and off-design states were performed in the hypersonic wind tunnel FD-07 of our institute, and computational fluid dynamics were employed to simulate flowfields as a supplement. According to the wind-tunnel tests and flow simulations, the aerodynamic forces and longitudinal stability were obtained and analyzed. The aerodynamic performance of the double-swept waverider did not fall significantly when deviating from the design states. The general trend was that, as Mach number increased, the lift-to-drag ratios dropped slightly. The double-swept waverider featured large longitudinal stability margin in hypersonic states, and the change in Mach number had little effect on longitudinal stability. Compared with the single configuration, the double-swept waverider suffered a decrease in lift-to-drag ratio, but showed a significant improvement in longitudinal stability.
Funder
National Natural Science Foundation of China
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献