Fully Parabolized Hypersonic Sonic Boom Prediction with Real Gas and Viscous Effects

Author:

King Christian B.1,Skowron Sean M.1,Miller Steven A. E.1ORCID

Affiliation:

1. University of Florida, Gainesville, Florida 32611-6250

Abstract

We present a methodology to predict the aerodynamic near-field and sonic boom signature from slender bodies and waveriders using a fully parabolized approach. We solve the parabolized Navier–Stokes equations, which are integrated via spatial marching in the streamwise direction. We find that unique physics must be accounted for in the hypersonic regime relative to the supersonic, which includes viscous, nonequilibrium, and real gas effects. The near-field aerodynamic pressure is propagated through the atmosphere to the ground via the waveform parameter method. To illustrate the approach, three bodies are analyzed: the Sears–Haack geometry, the HIFiRE-5, and a power-law waverider. Ambient Mach numbers range from 4 through 15. The viscous stress tensor is essential for accurate hypersonic prediction. For example, viscous effects increase near-field and sonic boom overpressure by 15.7 and 8.49%, respectively, for the Sears–Haack geometry. The difference between viscous and inviscid predictions of the near-field is due to the hypersonic boundary layer. The computational cost for predicting the near-field is approximately 6.6% relative to fully nonlinear computational fluid dynamics.

Funder

Defense Advanced Research Projects Agency

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3