Research and Analysis of Coulomb Friction in Landing Gear Shimmy

Author:

Ruan Shuang1ORCID,Zhang Ming1,Nie Hong1ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, People’s Republic of China

Abstract

Aircraft are subject to small disturbances during taxiing, many of which are accidental and difficult to explain. Although nonlinear factors are considered in traditional analysis, Coulomb friction is generally ignored, and the interaction and common effects of nonlinear factors are mostly not discussed. In this paper, the dynamic model of shimmy is established, and the influence of Coulomb friction on shimmy is studied by using bifurcation theory and the structural mechanics analysis method. The results show that the system with Coulomb friction has subcritical Hopf bifurcation and that the system with square damping has supercritical Hopf bifurcation. Although the two do not change the stability of the system, their cooperation can improve the stability of the system. The Coulomb friction torque of the system has a complex piecewise functional relationship with the stability distance, rake angle, and acceleration. Some combinations will lead to very low Coulomb friction and deteriorate the anti-interference ability of the landing gear. This paper provides theoretical basis and support for the rational design of structural parameter collocation, enhancing the antidisturbance ability of the system during constant-speed or variable-speed taxis and explaining the shimmy phenomenon in the process of variable-speed taxis of some aircraft.

Funder

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3