Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation

Author:

Mangin Bruno1ORCID,Daroukh Majd1ORCID,Gabard Gwénaël2ORCID

Affiliation:

1. ONERA, Paris Saclay University, F-92322 Châtillon, France

2. Acoustics Laboratory of the University of Le Mans, UMR 6613, Institute of Acoustics—Graduate School, CNRS, 72085 Le Mans University, France

Abstract

This paper presents a multimodal method for the computation of the acoustic field in an axisymmetric varying duct with or without liner and in the presence of mean flow. The original three-dimensional equations are rearranged into a set of coupled one-dimensional equations by projecting the acoustic field over transverse basis functions. To maintain the computational efficiency of the original multimodal method (applicable without flow), only the leading-order effects of the mean flow are modeled using a multiple-scales approach. A matching procedure is also given to deal with liner discontinuities in such a duct. Two different transverse bases are used: one is based on Fourier–Bessel functions to evaluate the effect of modal scattering and the other is based on Fourier–Chebyshev polynomials to improve the method efficiency. The formulation is evaluated against analytical models based on the Wentzel–Kramers–Brillouin technique and against finite-element solutions. It is shown to give consistent results for minor computational cost for modes propagating in ducts with or without acoustic liners. This method can be easily adapted to take into account more complex flows and geometries.

Funder

Horizon 2020 Framework Programme

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-duct flow computation and acoustic propagation using the admittance multimodal formulation;The Journal of the Acoustical Society of America;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3