DPW-7: Steady and Unsteady Computations of the Common Research Model at Different Reynolds Numbers

Author:

Hue David1ORCID,Sartor Fulvio1,Petropoulos Ilias1ORCID,Fournis Camille1

Affiliation:

1. ONERA–The French Aerospace Lab, 92190 Meudon, France

Abstract

This article presents the numerical computations performed at ONERA for the Seventh AIAA Drag Prediction Workshop. By introducing Reynolds numbers up to 30  million closer to the flight conditions, greater lift levels beyond the design point, and time-accurate simulations, this new session has allowed the previous studies to be extended. The Common Research Model aircraft configuration has been considered in its academic wing-body version and calculated in this work with point-matched structured grids. The ONERA Cassiopee software as well as the elsA solver and the FFDπ far-field drag code have been used. The grid convergence study has shown larger pressure drag variations than what was obtained at the cruise lift coefficient, but increasing the Reynolds number seems to reduce this trend. Then, the angle-of-attack sweep study with the lift, drag, and moment polars has given the opportunity to assess different numerical settings such as the Spalart–Allmaras and [Formula: see text] shear stress transport turbulence models with the quadratic constitutive relation approach (QCR-2000) and to discuss the comparison between computational fluid dynamics results and wind-tunnel data. Concerning the Reynolds number increase, it has appeared that the main part of drag reduction comes from the friction ([Formula: see text]) and viscous pressure drag ([Formula: see text]) components. The prediction of pitching moment increments due to Reynolds number variations still needs to be significantly improved. Finally, for an angle of attack above 4.00 deg, by the use of unsteady Reynolds-averaged Navier–Stokes computations, an unsteady buffet phenomenon has been observed and analyzed.

Funder

ONERA general ressources

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3