Computational Fluid Dynamics Analysis of Jet-Ullage Interactions During Microgravity Mixing

Author:

Kartuzova Olga1,Kassemi Mohammad1

Affiliation:

1. Case Western Reserve University, Cleveland, Ohio 44106

Abstract

Forced jet mixing with and without cooling has long been proposed for active pressure control of cryogenic tanks in microgravity. In this paper, a three-dimensional two-phase computational fluid dynamics (CFD) model is presented that was developed to capture the intricate dynamic interaction between a forced liquid jet and the ullage interface under weightlessness conditions. The CFD model is validated against the microgravity results of the Tank Pressure Control Experiment. The volume-of-fluid method is used to capture the ullage deformation as well as movement in the jet mixing simulations of the microgravity experiment. Two different initial ullage positions are considered, and computational results for the jet–ullage interaction are compared with a still-image sequence captured from real-time video of the experiment. Parametric simulations over a range of jet Weber numbers indicate four distinct jet–ullage interaction modes from nonpenetrating to fully penetrating, which are corroborated experimentally. Qualitative comparisons also provide good agreement between CFD predictions and experimental results with regard to the main features of the ullage dynamics, such as movement, deformation, and jet penetration during microgravity mixing.

Funder

Glenn Research Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Reference21 articles.

1. BentzM. D. “Tank Pressure Control in Low Gravity by Jet Mixing,” NASA CR-191012, March 1993.

2. Jet mixing in low gravity - Results of the Tank Pressure Control Experiment

3. HasanM. M.LinC. S.KnollR. H.BentzM. D. “Tank Pressure Control Experiment: Thermal Phenomena in Microgravity,” NASA TP-3564, March 1996, https://ntrs.nasa.gov/citations/19960017263 [retrieved 23 Aug. 2023].

4. A review on numerical consideration for computational fluid dynamics modeling of jet mixing tanks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3