Affiliation:
1. University of Colorado Boulder, Boulder, Colorado 80303
Abstract
The optimization of a hypersonic glide vehicle’s reachable domain is studied using different models to constrain the stagnation-point heat transfer. The vehicle is modeled as a high-lift common aero vehicle that uses bank-angle modulation for crossrange maneuvering with a leading-edge thermal protection system made of an ultra-high-temperature ceramic. A constrained nonlinear optimization problem is formulated to determine the range of feasible trajectories that satisfy aerodynamic heating and loading constraints. The optimal control profile is determined using a modified particle swarm optimization routine that employs a penalty function approach to handle path and terminal constraints. Baseline trajectories are determined using an existing convective heat-flux correlation, and the effect of surface catalycity on the optimized trajectories is investigated by applying a correction factor, derived from high-fidelity computational fluid dynamics simulations, to the heat-flux correlation. Results demonstrate a high sensitivity of the optimized trajectories to the underlying aerothermodynamics model such that accounting for surface catalycity expands the reachability by an order of magnitude.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献