Diagnosing Incipient Faults for a Faster Adoption of Sustainable Aerospace Technologies

Author:

Di Fiore F.1ORCID,Berri P. C.1ORCID,Mainini L.2ORCID

Affiliation:

1. Politecnico di Torino, Turin 10129, Italy

2. Imperial College London, London SW7 2AZ, United Kingdom

Abstract

Next-generation aircraft require the development and integration of a deal of innovative green technologies to meet the ambitious sustainability goals set for aviation. Those transformational efforts are associated with a tremendous increase in the complexity of the onboard systems and their multiphysics-coupled behaviors and dynamics. A critical aspect relates to the identification of the coupled faults resulting from the integration of those green technologies, which introduce damage identifiability issues and demand new approaches for the efficient and accurate identification of non-nominal fault conditions. Model-based fault detection and identification (FDI) methodologies have been proven essential to identify onboard the damages affecting the systems from physical signal acquisitions, but existing methods are typically computationally expensive and fail to capture incipient coupled faults, which prevents their adoption and scaling with the increasing complexity of novel multiphysics systems. This work introduces a multifidelity framework to accelerate the identification of fault modes affecting complex systems. An original two-stage compression computes an optimally informative and highly reduced representation of the monitoring signals for the minimum demand of onboard resources. A multifidelity scheme for Bayesian inversion is developed to infer multidomain fault parameters from the compressed signals: variable cost and fidelity models are optimally queried for a major reduction of the overall computational expense. The framework is demonstrated and validated for aerospace electromechanical actuators affected by incipient multimodal faults. Remarkable accelerations of the FDI procedure are observed, and the exact identification of the incipient fault condition was achieved one order of magnitude faster than with standard algorithms.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3