Aircraft Categorization Approach Using Machine Learning to Analyze Aircraft Behavior

Author:

Vincent-Boulay Nicolas1,Marsden Catharine1

Affiliation:

1. Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada

Abstract

The establishment of aircraft categories is a classification technique employed in a variety of aviation disciplines, including design and development, certification, ongoing airworthiness, air traffic management, surveillance, and safety analysis. Traditional approaches rely on manual feature engineering, which can be labor-intensive and ineffective for capturing complex patterns. In this paper, an approach to aircraft categorization using unsupervised machine learning clustering is proposed. The aim of the proposed approach is to be simple in order to be useful and understandable across disciplinary domains; to be scalable to large volumes of air traffic data; and to be adaptable to changes to account for the evolving technological and operational nature of the airspace environment. The application is based on an adapted version of the [Formula: see text]-means algorithm that can group aircraft into clusters based on 3D position over time. The approach is validated using real-world, publicly available ADS-B air traffic data, and the results are compared to traditional categorization methods from the field of aircraft certification. The results showed that the model could be used to 1) identify and group aircraft sharing the same flight phase, 2) categorize aircraft with a similar general heading or direction, and 3) distinguish between local regional aircraft operations and longer flight operations. It was also shown that, depending on the use case, the model could be extended to identify more granular behaviors by increasing the [Formula: see text] value used to create the model. Overall, the findings demonstrate that leveraging machine learning techniques for aircraft categorization provides an effective, automated, and scalable solution applicable to a wide range of current applications.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Reference39 articles.

1. Aircraft Design

2. JacksonS., Systems Engineering for Commercial Aircraft, Routledge, Abingdon, Oxon, U.K., 2016, pp. 15–38, Chap. 2.

3. BarreraD. L., Aircraft Maintenance Programs, Springer, Berlin, 2022, pp. 233–256, Chap. 11.

4. Modeling and Optimization in Traffic Flow Management

5. A Performance-Based Airspace Model for Unmanned Aircraft Systems Traffic Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3