Summary of the 4th High-Lift Prediction Workshop Hybrid RANS/LES Technology Focus Group

Author:

Ashton Neil1,Batten Paul2,Cary Andrew3,Holst Kevin4

Affiliation:

1. Amazon Web Services, London, England EC1A 2FD, United Kingdom

2. Metacomp Technologies Inc., Westlake Village, California 91361

3. Boeing Research & Technology, St Louis, Missouri 63130

4. University of Tennessee, Knoxville, Tennessee 37996

Abstract

This paper summarizes the collective efforts of multiple teams that contributed to the hybrid RANS/LES technical focus group for the 4th AIAA CFD High Lift Prediction Workshop (HLPW-4), which took place on January 7, 2022, in San Diego, California. The overall conclusion is that turbulence-resolving methods such as hybrid RANS/LES (HRLES) do offer improved predictions for these high-lift geometries, with respect to the underlying RANS models, but there are nuances, and some unresolved issues remain that should be the focus of future work. In particular, while HRLES methods appear to show clearly improved predictions at higher angles of attack, there is some tendency for HRLES methods to return slightly worse moment predictions at lower angles of attack, suggesting that prediction of the shallow separation from the flaps might need further research. Computing cost also remains a significant issue, with HRLES methods requiring roughly nine times more high-performance computing central processing unit core hours than steady-state RANS methods, indicating that future algorithmic and computational optimization could be beneficial. Finally, there are strong indications that modeling the wind tunnel has a positive impact on correlation with experimental measurements, suggesting that future work might be better focused on in-tunnel simulations.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference30 articles.

1. On the role and challenges of CFD in the aerospace industry

2. SlotnickJ.KhodadoustA.AlonsoJ.DarmofalD.GroppW.LurieE.MavriplisD. “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,” NASA CR-2014-21878, 2014, https://ntrs.nasa.gov/citations/20140003093.

3. Delivering better power: the role of simulation in reducing the environmental impact of aircraft engines

4. An industrial view on numerical simulation for aircraft aerodynamic design

5. Fourth High-Lift Prediction/Third Geometry and Mesh Generation Workshops: Overview and Summary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3