Affiliation:
1. The Ohio State University, Columbus, Ohio 43210
2. NASA Glenn Research Center, Cleveland, Ohio 44145
Abstract
Bleed is often used to alleviate the detrimental effects of shock-wave/boundary-layer interactions in high-speed vehicles. Simulations play a crucial role in successfully implementing this control methodology; however, high-fidelity approaches are prohibitively expensive for parametric design studies. Thus, simplified models are typically employed. The errors introduced by these models are difficult to quantify, especially under off-design conditions, which results in compounding uncertainties in realistic configurations. To address this knowledge gap, a three-dimensional Reynolds-averaged Navier–Stokes simulation with discrete bleed holes is compared to a two-dimensional simulation with a bleed boundary condition. Notable differences in boundary-layer shape and turbulence parameters are observed, which are then used to perform sensitivity analyses on an impinging shock response. The response quantity of interest is the shock-reflection angle, for which a variation of more than 3 deg is observed. The most sensitive input uncertainties are found to be the inflow shape factor and the eddy viscosity magnitude, which have not been directly explored in existing models. Therefore, this work assimilates the simulation results to account for the observed disagreement between existing experimental and numerical campaigns. Additionally, the identified sensitive parameters inform future model development efforts, thus aiding in improving the design capabilities of high-speed inlets.
Funder
DoD HPCMP Hypersonic Vehicle Simulation Institute
NASA Graduate Student Fellowship Program
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献