Fast Homotopy for Spacecraft Rendezvous Trajectory Optimization with Discrete Logic

Author:

Malyuta Danylo1ORCID,Açıkmeşe Behçet1

Affiliation:

1. University of Washington, Seattle, Washington 98195

Abstract

This paper presents a computationally efficient optimization algorithm for solving nonconvex optimal control problems that involve discrete logic constraints. Traditional solution methods require binary variables and mixed-integer programming (MIP), which is prohibitively slow and computationally expensive. This paper proposes a faster and computationally cheaper algorithm that can produce locally optimal solutions in seconds. This is achieved by blending sequential convex programming and numerical continuation into a single iterative solution process. The algorithm approximates discrete logic constraints with smooth functions and uses a homotopy parameter to control the accuracy of this approximation. The homotopy parameter is updated such that, by the time the algorithm converges, the smooth approximations enforce the exact discrete logic. The effectiveness of this approach is numerically demonstrated for a realistic rendezvous scenario inspired by the Apollo Transposition and Docking maneuver. In less than 15 s of cumulative solver time, the algorithm finds a fuel-minimizing trajectory that obeys the following discrete logic constraints: thruster minimum impulse-bit, range-triggered approach cone, and range- triggered plume impingement. The optimized trajectory uses significantly less fuel than reported NASA design targets.

Funder

Air Force Office of Scientific Research

Office of Naval Research

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3