Trilinear Immersed-Finite-Element Method for Three-Dimensional Anisotropic Interface Problems in Plasma Thrusters

Author:

Han Yajie1,Xia Guangqing1,Lu Chang1,He Xiaoming2

Affiliation:

1. Dalian University of Technology, 116024 Dalian, People’s Republic of China

2. Missouri University of Science & Technology, Rolla, Missouri 65401

Abstract

Accurately solving the anisotropic interface problem is one of the difficulties in aerospace plasma applications. Based on cubic Cartesian meshes, this paper develops a trilinear nonhomogeneous immersed finite element (IFE) method for solving the complex anisotropic 3D elliptic interface model with nonhomogeneous flux jump. Compared with the existing 3D linear IFE spaces based on tetrahedron meshes, the newly designed trilinear IFE space for the target model simplifies the mesh generation, significantly reduces the number of mesh elements and interface elements, provides much more convenient and efficient ways for finding the intersections between interfaces and mesh edges, and decreases the errors. These advantages lead to much higher efficiency when solving complex anisotropic interface problems in practice. In addition, the proposed method can be easily incorporated into other typical methods based on Cartesian meshes, such as the particle-in-cell method for plasma simulation. Numerical experiments are provided to verify the optimal accuracy, high efficiency, and reliability of the proposed method for solving complex interface problems, as well as its applicability to practical plasma thruster problems.

Funder

Fundamental Research Funds for the Central Universities of China

National Natural Science Foundation of China

S&T Program of Hebei

S&T Innovation Program of Hebei

National Key R&D of China

S&T Program of Langfang

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3