Autonomous Emergency Landing for Fixed-Wing Aircraft with Energy-Constrained Closed-Loop Prediction

Author:

Deal Samuel J.1,Nichols Hayden L.1,Mazumdar Anirban1ORCID

Affiliation:

1. Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

This paper presents a new approach for autonomous motion planning for aircraft suffering from a loss-of-thrust emergency. Specifically, we show how modifications to the Closed-Loop Rapidly exploring Random Trees (CL-RRT) framework combined with controlled energy dissipation can enable rapid and effective kinodynamic motion planning. This CL-RRT Glide algorithm uses closed-loop prediction not only for node connections but also to estimate the remaining energy and prune infeasible paths. This greatly speeds up the search process, which is essential for emergency situations. In addition, we improve the ability of the gliding aircraft to reach a goal position and energy state. We do so by creating a Dissipative Total Energy Control Scheme (TECS). Dissipative TECS enables the glider to lose excess altitude in order to reach a desired energy level. Simulation results illustrate how the proposed methods enable faster motion planning. We also integrate the system into a small unmanned aerial vehicle system and experimentally demonstrate autonomous glide planning and execution during a motor-failure event. This type of algorithm can primarily benefit unmanned aircraft but can also serve to assist pilots in stressful emergency situations.

Funder

Sandia National Laboratories

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3