Effects of Thermal/Chemical Nonequilibrium on a High-Mach Ethylene-Fueled Scramjet

Author:

Yao Wei1,Liu Hang1,Zhang Zheng1,Zhang Xu1,Yue Lianjie1,Zhang Xiaoyuan1,Li Jinping1

Affiliation:

1. Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, People’s Republic of China

Abstract

An ethylene-fueled scramjet operating at Mach 10 was experimentally tested in the JF-24 shock tunnel and modeled using improved delayed detached eddy simulation based on up to 368.34 million cells. An in-depth analysis of the effects of thermal and chemical nonequilibrium on combustion characteristics and engine performance was conducted. The contrary effects of nonequilibrium heating and nonequilibrium cooling that occur in different sections of a scramjet were revealed. The underlying mechanism can be attributed to the delayed relaxation of thermal nonequilibrium under energy addition or deduction. The nonequilibrium case has better mixing, while the equilibrium case has higher combustion efficiency. The synchronous reductions in thrust and drag counteract each other and lead to a higher final net thrust under nonequilibrium. The net thrust increases with the global equivalence ratio, whereas the specific impulse decreases. The evolution of flamelets and reaction paths were analyzed to reveal the effect of chemical nonequilibrium, which produces an abundance of O, OH, and NO radicals through endothermic dissociation reactions and significantly alters the rate-limiting reaction paths.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Reference136 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3