Direct Numerical Simulation of Boundary Layers over Microramps: Mach Number Effects

Author:

Della Posta Giacomo1ORCID,Fratini Marco1ORCID,Salvadore Francesco2ORCID,Bernardini Matteo1ORCID

Affiliation:

1. Sapienza University of Rome, 00184 Rome, Italy

2. CINECA, 00185 Rome, Italy

Abstract

Microvortex generators are passive control devices with heights below the boundary-layer thickness that have been proposed to mitigate the detrimental effects of shock-wave/boundary-layer interaction. Despite their demonstrated control effectiveness, several aspects of the flow induced in turbulent boundary layers still need to be characterized thoroughly. In this work, we present a campaign of direct numerical simulations of a turbulent boundary layer on a microramp, to investigate the effect of the Mach number, from subsonic to supersonic regime. We show that the flow topology changes significantly because of compressibility effects, and that typical wake features do not scale linearly with the geometry dimensions but rather depend on the incoming flow conditions. Moreover, we investigate the spectral content in time and space of the wake, which is dominated by the Kelvin–Helmholtz instability developing along the shear layer. For larger Mach numbers, the shedding onset is postponed and exhibits a lower peak frequency that evolves in space. Finally, we extract the spatially coherent structures convected in the wake by means of a dynamic mode decomposition along the characteristics, which represents effectively and efficiently the evolution of the entire field, despite the convective nature of the flow under consideration.

Funder

GREEN H2 CFD Progetto POR FESR LAZIO

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3