Affiliation:
1. University of Maryland Baltimore County, Baltimore, Maryland 21250
2. DEVCOM–Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005
Abstract
A numerical study is conducted to understand the impact of an unsteady freestream on the aerodynamic performance of an oscillating airfoil. The unsteady flow environment is generated by placing a stationary inline circular cylinder array upstream of the oscillating airfoil. The dependence of thrust with variation of Reynolds numbers and Strouhal numbers is investigated, and it is revealed that the unsteady flow environment enhances thrust production of a pitching airfoil. This increased thrust production was related to an effective increase in the Reynolds number experienced by the airfoil. With airfoil–vortex interaction analysis, the increase in average thrust coefficient was shown to be caused by constructive interaction of freestream vortex structures and the oscillating airfoil. Drag-inducing interactions were also observed but were less common than thrust-increasing events, resulting in a higher average thrust. A simple scaling law is expanded to include the effects of unsteadiness, where thrust is found to be linearly dependent on turbulence intensity. It is demonstrated that the thrust generated by the pitching airfoil when operating in highly unsteady flow environments is more accurately represented as a function of Reynolds number, Strouhal number, and turbulence intensity.
Funder
National Science Foundation
Army Research Laboratory
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献