Affiliation:
1. San Diego State University, San Diego, California 92182
2. Wayne State University, Detroit, Michigan 48202
Abstract
Unmanned aerial vehicles or drones are widely used or proposed to carry out various tasks in low-altitude airspace. To safely integrate drone traffic into congested airspace, the current concept of operations for drone traffic management will reserve a static traffic volume for the whole planned trajectory, which is safe but inefficient. In this paper, we propose a dynamic traffic volume reservation method for the drone traffic management system based on a multiscale A* algorithm. The planning airspace is represented as a multiresolution grid world, where the resolution will be coarse for the area on the far side. Therefore, each drone only needs to reserve a temporary traffic volume along the finest flight path in its local area, which helps release the airspace back to others. Moreover, the multiscale A* can run nearly in real-time due to a much smaller search space, which enables dynamically rolling planning to consider updated information. To handle the infeasible corner cases of the multiscale algorithm, a hybrid strategy is further developed, which can maintain a similar optimal level to the classic A* algorithm while still running nearly in real-time. The presented numerical results support the advantages of the proposed approach.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献