Experimental Study of Dynamic Ice Accretion Process over Rotating Aeroengine Fan Blades

Author:

Tian Linchuan1,Li Linkai1,Hu Haiyang1ORCID,Hu Hui1ORCID

Affiliation:

1. Iowa State University, Ames, Iowa 50011-2271

Abstract

An experimental campaign was conducted to study dynamic ice accretion on rotating aeroengine fan blades and evaluate the icing-induced performance degradation to the fan rotor. The experiments were performed in an icing research tunnel with a scaled spinner-fan model exposed to typical dry rime and wet glaze icing conditions. Although the accreted ice layers were found to conform well with the shapes of the fan blades under the rime icing condition, the performance of the fan rotor was found to degrade substantially due to the much rougher blade surfaces, causing up to 60% reduction in the pressure increment after 360 s of the rime icing experiment. More complicated, needlelike icicles were found to grow rapidly over the rotating spinner and fan blades under the glaze icing condition due to the combined effects of the aerodynamic forces and the centrifugal forces associated with the rotation motion. The irregular-shaped glaze ice structures were found to induce tremendous detrimental effects on the fan rotor, making the airflow depressurized, instead of pressurized, after passing the iced fan rotor. The iced spinner-fan model was always found to consume more power, regardless of rime or glaze ice structures accreted on the fan blades.

Funder

NSF

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3