Design Exploration of a Distributed Electric Propulsion Aircraft Using Explainable Surrogate Models

Author:

Satria Palar Pramudita1,Nguyen Van Eric2,Bartoli Nathalie2ORCID,Morlier Joseph2ORCID

Affiliation:

1. Bandung Institute of Technology, Bandung, West Java 40132, Indonesia

2. University of Toulouse, 31000 Toulouse, France

Abstract

Distributed electric propulsion in aircraft design is a concept that involves placing multiple electric motors across the aircraft’s airframe. Such a system has the potential to contribute to sustainable aviation by significantly reducing greenhouse gas emissions, minimizing noise pollution, improving fuel efficiency, and encouraging the use of cleaner energy sources. This paper investigates the impact and relationship of turbo-electric propulsion component characteristics with three performance quantities of interest: lift-to-drag ratio, operating empty weight, and fuel burn. Using the small- and medium-range “DRAGON” aircraft concept, we performed design exploration enabled through the explainable surrogate model strategy. This work uses Shapley additive explanations to illuminate the dependencies of these critical performance metrics on specific turbo-electric propulsion component characteristics, offering valuable insights to inform future advancements in electric propulsion technology. Through global sensitivity analysis, the study reveals a significant impact of electrical power unit (EPU) power density on lift-to-drag ratio, alongside notable roles played by EPU-specific power and applied voltage. For operating empty weight, EPU-specific power and voltage are highlighted as critical factors, while turboshaft power-specific fuel consumption notably influences fuel burn. The analysis concludes by exploring the implications of the insights for the future development of turbo-electric propulsion technology.

Funder

Institut Teknologi Bandung

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3