Radiative Heat Transfer Measurements of Titan Atmospheric Entry in a Shock Tube

Author:

Sopek Tamara1ORCID,Glenn Alex1,Clarke Justin1ORCID,di Mare Luca1,Collen Peter1,McGilvray Matthew1

Affiliation:

1. University of Oxford, Oxford, England OX1 3AZ, United Kingdom

Abstract

Measurements were performed in the T6 Stalker facility operating in Aluminum Shock Tube mode for conditions relevant to Titan entry. Spatially and spectrally resolved radiation emitted from a high-temperature test gas behind a normal shock was recorded by means of emission spectroscopy. For Titan atmospheric entry, the main radiator of interest is cyano radical, formed in the nonequilibrium region behind the shock. The tests reported in this work measured radiation at velocities from 3.1 to 8.5 km/s and freestream pressures of 13, 20, and 133 Pa at a nominal composition of 98% [Formula: see text] and 2% [Formula: see text]. These shock layer radiation experiments employed an optical emission spectroscopy system on each side of the facility to allow two spectral regions to be measured simultaneously for each test, covering the spectral range of 200–900 nm. The present work provides a new, comprehensive benchmark set of data relevant to Titan entry studies.

Funder

Rhodes Scholarships

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3