Deep Gaussian Process Enabled Surrogate Models for Aerodynamic Flows
Author:
Affiliation:
1. Georgia Institute of Technology
2. Argonne National Laboratory
3. Siemens Corporate Technology
Publisher
American Institute of Aeronautics and Astronautics
Reference23 articles.
1. Vafa, K., and Rush, A. “Training and Inference for Deep Gaussian Processes,” Ph.D. thesis,Harvard University, 2016.
2. Learning Uncertainty using Clustering and Local Gaussian Process Regression
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Global sensitivity analysis of stochastic re-entry trajectory using explainable surrogate models;Acta Astronautica;2024-09
2. Deep Gaussian process for enhanced Bayesian optimization and its application in additive manufacturing;IISE Transactions;2024-03-11
3. Heterogeneous data-driven aerodynamic modeling based on physical feature embedding;Chinese Journal of Aeronautics;2023-11
4. SmOOD: Smoothness-based Out-of-Distribution Detection Approach for Surrogate Neural Networks in Aircraft Design;Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering;2022-10-10
5. Knowledge-based turbomachinery design system via a deep neural network and multi-output Gaussian process;Knowledge-Based Systems;2022-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3