Electrohydrodynamic Swirl-Flow Generators for Application in Thermal Management

Author:

Lin S. C.1,Huang B. L.1,Liou S. H.1,Lai F. C.2

Affiliation:

1. National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China

2. University of Oklahoma, Norman, Oklahoma 73019

Abstract

The arrangement of electrodes in an electrohydrodynamic (EHD) gas pump inside a square channel is experimentally examined for its effective use in thermal management. Particularly, the study looks into modifying the characteristics of flow produced by an EHD gas pump through the arrangement of its electrodes. The aim is to produce swirl flow, which can effectively increase the flow mixing inside the channel and leads to the desired outcome. To this end, a two-stage gas pump powered by direct-current voltages ranging from 24 to 26 kV with electrodes flush mounted on two neighboring walls is devised. In addition to the volume flow rate produced, the performance of the pump is evaluated using an energy efficiency factor, which is defined as the volume flow rate delivered by a unit power input. It is found that the EHD gas pump with offset electrodes can not only produce more volume flow rate but also has a larger value for energy efficiency, which may be more favorable for the application in thermal management. The present results reveal that the EHD gas pump has great potential for applications in thermal management and can be more energy efficient when operated with uneven applied voltages.

Funder

Ministry of Science and Technology, Taiwan

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3