Autonomous Maneuver Planning for Small-Body Reconnaissance via Reinforcement Learning

Author:

Chen Zheng1,Cui Hutao1,Tian Yang1

Affiliation:

1. Harbin Institute of Technology, 150001 Harbin, People’s Republic of China

Abstract

This paper presents a reinforcement learning (RL) based approach for autonomous maneuver planning of low-altitude flybys for site-specific reconnaissance of small bodies. Combined with Monte Carlo tree search and deep neural networks, the proposed method generates optimal maneuvers, even under complex dynamics and abstractly science goals. Formulating the mission objective as an observability function, the RL issue can be framed in terms of a Markov decision process. The neural network, trained by a novel policy gradient algorithm with a clipped surrogate objective, learns both policy and value functions that map the action and state spaces to the expected long-term return. An adaptive refinement search technique is applied to further enhance the trained policy network, finding optimal maneuvers from the policy distributions. Experiment results on a simulated reconnaissance mission around asteroid Itokawa illustrate the efficiency and robustness of the proposed approach in achieving multitarget observation.

Funder

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3