Experimental Assessment of Hypersonic Convective Heat Transfer Augmentation due to Surface Roughness

Author:

Forsyth Peter R.1ORCID,Hambidge Chris1,McGilvray Matthew1

Affiliation:

1. University of Oxford, Oxford, England, United Kingdom

Abstract

Although engineering correlations exist for the effects of small-scale roughness on heat transfer and shear stress, the complexity of flow physics for elements whose height exceeds the sonic line of hypersonic boundary layers is largely unknown. Additionally, the superposition of multiple scales of roughness in largely unexplored. This study investigates the heat transfer augmentation of two scales of patterned roughness, both individually and combined, where the large-scale roughness exceeds 20% of the boundary-layer height. These mimic technical roughnesses from the original experiments from Nikuradse low-speed experiments. The experiments were undertaken in a Ludwieg tunnel at a nominal Mach number of 5 and unit Reynolds number of [Formula: see text]. Determination of the Stanton numbers were performed by combining measurements of the freestream total temperatures with the measurement of the heat transfer from calorimeter and thin-film heat transfer gauges. Results indicate trends toward bulk heat transfer augmentation of order 20, 40, and 50% with increased [Formula: see text] for the small-, large-, and multiscale roughness patterns tested, respectively. For the large-scale roughness pattern investigated, significant heat transfer suppression was measured in the troughs between the elements; enhancement was measured to be substantial on the peaks, with notable difference distinguished between the spans and the intersections of the elements.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3