Experimental Studies of Hypersonic Shock Impingement on a Transpiration-Cooled Flat Plate

Author:

Naved Imran1ORCID,Hermann Tobias1,Hambidge Chris1,McGilvray Matthew1

Affiliation:

1. University of Oxford, Oxford, England OX2 0ES, United Kingdom

Abstract

Hypersonic vehicle design requires mitigation of the high heat fluxes present in regions of shock-wave/boundary-layer interactions. A candidate technology that may be applied locally to these regions is transpiration cooling. In this work, experiments were conducted in the University of Oxford’s high-density tunnel at Mach 6.1 in both laminar and turbulent undisturbed boundary-layer regimes where a 10 deg shock generator impinged a strong oblique shock wave onto a transpiration-cooled microporous injector. For the laminar boundary layer, due to the strength of the incident shock, a transitional shock-wave/boundary-layer interaction region was formed with peak heating over 50 times greater than the nominal laminar level. Both nitrogen and helium were used as coolants. Relatively low levels of helium injection of [Formula: see text] for the transitional and [Formula: see text] for the turbulent scenarios were sufficient to reduce the heat transfer downstream of shock interaction to approximately 50% of the value without cooling. In fact, helium is highly effective with a similar cooling performance achieved as eight times the equivalent mass flux of nitrogen. The experimental data are correlated, and both the turbulent and transitional shock-impingement scenarios display a similar trend of reduced surface heat transfer with higher blowing parameters. Empirical fits are proposed that may be used for initial systems design.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3