Affiliation:
1. Technical University of Munich, 85748 Garching, Germany
2. ENAC, University of Toulouse, 31400 Toulouse, France
Abstract
In this paper, a nature-inspired guidance algorithm based on the panel method is proposed. The panel method is a numerical tool borrowed from the aerodynamics domain to calculate the potential field of a fluid flow around arbitrarily shaped objects. The proposed algorithm has little computational load and generates guidance vectors in real time that can guide multiple vehicles through smooth and collision-free paths. Panel-method-based guidance is a promising candidate for air mobility applications in urban environments where multiple aerial vehicles are expected to operate simultaneously without colliding with architectural structures and other vehicles in the airspace. In this study, the effectiveness and feasibility of the proposed guidance method is evaluated through a test campaign conducted in Toulouse, France, using multiple quadrotors in a scaled urban environment. Furthermore, the robustness of the guidance method under wind disturbances is tested in both indoor and outdoor experiments. Experimental results suggest that the panel-method-based guidance algorithm is an effective and robust tool for real-time, collision-free guidance of multiple aerial vehicles in complex urban environments.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)