Urban Air Mobility Guidance with Panel Method: Experimental Evaluation Under Wind Disturbances

Author:

Bilgin Zeynep1,Yavrucuk Ilkay1,Bronz Murat2

Affiliation:

1. Technical University of Munich, 85748 Garching, Germany

2. ENAC, University of Toulouse, 31400 Toulouse, France

Abstract

In this paper, a nature-inspired guidance algorithm based on the panel method is proposed. The panel method is a numerical tool borrowed from the aerodynamics domain to calculate the potential field of a fluid flow around arbitrarily shaped objects. The proposed algorithm has little computational load and generates guidance vectors in real time that can guide multiple vehicles through smooth and collision-free paths. Panel-method-based guidance is a promising candidate for air mobility applications in urban environments where multiple aerial vehicles are expected to operate simultaneously without colliding with architectural structures and other vehicles in the airspace. In this study, the effectiveness and feasibility of the proposed guidance method is evaluated through a test campaign conducted in Toulouse, France, using multiple quadrotors in a scaled urban environment. Furthermore, the robustness of the guidance method under wind disturbances is tested in both indoor and outdoor experiments. Experimental results suggest that the panel-method-based guidance algorithm is an effective and robust tool for real-time, collision-free guidance of multiple aerial vehicles in complex urban environments.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3