Flight Performance and Dispersion Analysis for a Flexible Tactical Missile

Author:

Khalil Mostafa1,Ahmed Mahmoud Y. M.1ORCID

Affiliation:

1. Military Technical College, 11766 Cairo, Egypt

Abstract

To deliver heavier payloads to longer ranges as the main objective of tactical missiles, higher slenderness and thrust-to-weight ratios are sought. This leads to the emergence of aeroelasticity, which can impact the accuracy of guided missiles and the accuracy and dispersion of unguided ones. The present study aims at exploring the effect of aeroelasticity on flight, dispersion, and accuracy of a case study tactical missile with about a 16.5 slenderness ratio. A framework is developed involving a flexible missile trajectory via [Formula: see text]-degree-of-freedom flight modeling, vibration characteristics estimation via the Euler–Bernoulli (EB) beam theory, aerodynamic characteristics estimation, and Monte Carlo simulation. Experiments are conducted to validate the EB theory and the aerodynamic model. A parametric study of the impact of missile flexibility and the roll rate on aeroelastic performance is conducted. The results show that missile deflection depends on the first bending frequency, and the static stability margin differs from that of the rigid one. It is also confirmed that aeroelastic divergence is introduced through the boosting phase. As the roll rate is introduced, higher aerodynamic frequency (and hence higher aerodynamic loads) is attained. Increasing the elasticity slightly reduces the missile downrange and yields precision improvement. Overall, the dynamic stability of the flexible missile increases as compared to that of the rigid case.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3