Affiliation:
1. The Ohio State University, Columbus, Ohio 43210
Abstract
There has been an extensive amount of work developing reduced-order models (ROMs) for bladed disks using single-sector models and a cyclic analysis. Several ROMs currently exist to accurately model a bladed disk with under-platform dampers. To better predict the complex nonlinear response of a system with under-platform dampers, this work demonstrates how two linear models can determine bounds for the nonlinear response. The two cases explored are where the under-platform damper is completely stuck and also where the damper slides without friction. This work utilizes the component mode mistuning method to model small mistuning and a parametric ROM method to capture changes in properties due to rotational speed effects. Previously, these ROM methodologies have modeled freestanding bladed disk systems. To evaluate the ROM in predicting the bounds, blade tip amplitudes from the models are compared with high-speed rotating experiments conducted in a large, evacuated vacuum tank. The experimental data were collected during testing using strain gauges and laser blade tip timing probes. The blade amplitudes of the tip timing data, strain gauge data, and computational simulations are compared to determine the effectiveness of the simplified linear analysis in bounding the nonlinear response of the physical system.
Funder
National Science Foundation
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献